概率论
之前被问一个概率论的题目,这里分享一下我的解法:
问题
问题一:
求:$\mathbb{E} \left( x_1x_2x_3x_4 \right) $
问题二:
且
求:$\mathbb{E} \left( x_1x_2x_3x_4 \right) $
误区
首先一个误区是就是考虑是均匀分布,我们先假设为均匀分布,则有:
\begin{equation} \begin{split} \mathbb{E}& \left( x_1+x_2+x_3+x_4 \right) =4\mathbb{E} \left( x_1 \right)\\ &=4\int_0^1{x_1dx_1}=2 \end{split} \nonumber \end{equation}
我们又知道:
因此产生矛盾,即是均匀分布不成立。如下正解
问题一解答
设是均匀分布的,那么:
\begin{equation} \iiiint_{ x_1+ x_2 + x_3 + x_4 \le 1}{dx_1 dx_2 dx_3 dx_4} =1 \end{equation}
\begin{equation} \begin{split} \frac{\partial^2 f}{\partial{x^2}} &= \frac{\partial(\Delta_x f(i,j))}{\partial x} = \frac{\partial(f(i+1,j)-f(i,j))}{\partial x} \\ &= \frac{\partial f(i+1,j)}{\partial x} - \frac{\partial f(i,j)}{\partial x} \\ &= f(i+2,j) -2f(f+1,j) + f(i,j) \end{split} \nonumber \end{equation}
则有:
\begin{equation} \begin{split} f\left( x_1,x_2,x_3,x_4 \right) &=\frac{1}{\iiiint_{x_1+x_2+x_3+x_4\le 1}{dx_1dx_2dx_3dx_4}}\\ &=\frac{1}{\int_0^1{dx_1}\int_0^{1-x_1}{dx_2}\int_0^{1-x_1-x_2}{dx_3}\int_0^{1-x_1-x_2-x_3}{dx_4}}\\ &=\frac{1}{\int_0^1{dx_1}\int_0^{1-x_1}{dx_2}\int_0^{1-x_1-x_2}{\left( 1-x_1-x_2-x_3 \right) dx_3}}\\ &=\frac{1}{\int_0^1{dx_1}\int_0^{1-x_1}{\frac{\left( 1-x_1-x_2 \right) ^2}{2}dx_2}}\\ &=\frac{1}{\int_0^1{dx_1}\int_0^{1-x_1}{\frac{x_{2}^{2}}{2}dx_2}}\\ &=\frac{1}{\int_0^1{\frac{\left( 1-x_1 \right)^3}{6}dx_1}}\\ &=\frac{1}{\int_0^1{\frac{x_1^3}{6}dx_1}}\\ &=24 \end{split} \nonumber \end{equation}
因此得到其概率密度为:
因此我们可以求出期望:
\begin{equation} \begin{split} \mathbb{E} \left( x_1x_2x_3x_4 \right) &=\iiiint_{\varOmega}{24x_1x_2x_3x_4dx_1dx_2dx_3dx_4}\\ &=24\int_0^1{x_1dx_1}\int_0^{1-x_1}{x_2dx_2}\int_0^{1-x_1-x_2}{x_3dx_3}\int_0^{1-x_1-x_2-x_3}{x_4dx_4}\\ &=24\int_0^1{x_1dx_1}\int_0^{1-x_1}{x_2dx_2}\int_0^{1-x_1-x_2}{x_3\frac{\left( 1-x_1-x_2-x_3 \right) ^2}{2}dx_3}\\ &=24\int_0^1{x_1dx_1}\int_0^{1-x_1}{x_2dx_2}\int_0^{1-x_1-x_2}{x_3\frac{\left( 1-x_1-x_2-x_3 \right) \left( 1-x_1-x_2 \right)}{4}dx_3}\\ &=24\int_0^1{x_1dx_1}\int_0^{1-x_1}{x_2\left[ \frac{\left( 1-x_1-x_2 \right) ^4}{24} \right] dx_2}\\ &=\int_0^1{x_1\frac{\left( 1-x_1 \right) ^6}{30}dx_1}\\ &=\frac{1}{56\times 30}=0.000595238 \end{split} \nonumber \end{equation}
问题二解答
问题二也即:
也即:
求
由于
\begin{equation} \begin{split} \mathbb{E} \left( x_1x_2 \right) &=\mathbb{E} \left( x_1\left( \frac{1}{2}-x_1 \right) \right)\\ &=\frac{1}{2}\mathbb{E} \left( x_1 \right) -\mathbb{E} \left( x_{1}^{2} \right) \\ &=\frac{1}{2}\times \frac{1}{4}-\int_0^{\frac{1}{2}}{2x^2dx}\\ &=\frac{1}{24} \end{split} \nonumber \end{equation}
因此:
计算机验证
clear;close all;
num = 100000;s1=0;N=0;
for i=1:num
x1 = rand;x2 = rand; x3 = rand; x4 = rand;
if x1+x2+x3+x4 <= 1
z1=x1*x2*x3*x4;N=N+1;
scatter(N,z1,8,'r')
hold on;
s1=s1+z1;
end
end
s1_mean=s1/N
clear s2;
s2=0;
for i=1:N
x1 = 1/2*rand; x3 = 1/2*rand;
z2=x1*(1/2-x1)*x3*(1/2-x3);
scatter(i,z2,8,'g')
s2=s2+z2;
end
s2_mean=s2/N
数值模拟的平均为:
验证成功。