加载数据
PyTorch有两个处理数据的库:torch.utils.data.DataLoader
和torch.utils.data.Dataset
。数据集存储样本及其对应的标签,DataLoader
在数据集周围包装一个可迭代对象。
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor, Lambda, Compose
import matplotlib.pyplot as plt
torchvision。数据集模块包含许多真实世界的视觉数据的数据集对象,如CIFAR, COCO(完整列表在这里)。在本教程中,我们使用FashionMNIST数据集。每个TorchVision Dataset包含两个参数transform和target_transform,分别修改样本和标签。
# Download training data from open datasets.
training_data = datasets.FashionMNIST(
root="data",
train=True,
download=True,
transform=ToTensor(),
)
# Download test data from open datasets.
test_data = datasets.FashionMNIST(
root="data",
train=False,
download=True,
transform=ToTensor(),
)
我们将 Dataset 作为参数传递给 DataLoader。它包装了一个遍历数据集的迭代器,并支持自动批处理、采样、洗牌和多进程数据加载。这里我们定义了一个64的批量大小,也就是说,dataloader 迭代器中的每个元素都将返回一个包含64个特性和标签的批量。
batch_size = 64
# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=batch_size)
test_dataloader = DataLoader(test_data, batch_size=batch_size)
for X, y in test_dataloader:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
创建模型
# Get cpu or gpu device for training.
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
# Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28*28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10)
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
model = NeuralNetwork().to(device)
print(model)
优化模型参数
loss_fn = nn.CrossEntropyLoss() ## 定义损失函数---交叉熵
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3) ## 定义随机梯度优化器SGD
在一个单独的训练循环中,模型对训练数据集进行预测(分批输入),并反向传播预测误差以调整模型的参数。
我们还根据测试数据集检查模型的性能,以确保它正在学习。
def test(dataloader, model, loss_fn):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
训练过程是在几个迭代(阶段)中进行的。在每个epoch期间,模型学习参数以做出更好的预测。我们打印模型在每个时期的准确性和损失;我们希望看到精确度的提高和损失的减少。
epochs = 5
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model, loss_fn)
print("Done!")
保存模型
torch.save(model.state_dict(), "model.pth")
print("Saved PyTorch Model State to model.pth")
加载模型
model = NeuralNetwork()
model.load_state_dict(torch.load("model.pth"))
对testdata进行预测:
classes = [
"T-shirt/top",
"Trouser",
"Pullover",
"Dress",
"Coat",
"Sandal",
"Shirt",
"Sneaker",
"Bag",
"Ankle boot",
]
model.eval()
x, y = test_data[0][0], test_data[0][1]
with torch.no_grad():
pred = model(x)
predicted, actual = classes[pred[0].argmax(0)], classes[y]
print(f'Predicted: "{predicted}", Actual: "{actual}"')